XONDAPARTNERS

Building the Business Case for Low-Power Wide-Area (LPWA) IoT Connectivity Networks

IoT613 - April 18, 2018

IoT The Value Chain

The Connectivity Ecosystems

The Technologies

IoT Network Elements

ThingWorx

Xively

Axeda

ProSyst (Bosch)

Open Source Platforms:

Sentilo

Kura

Node-RED (IBM)

Technologies (eg):

- •LoRa
- •C-UNB
- Weightless

Data Protocols:

- •MQTT
- •CoAP
- •6LoWPAN

Device Management:

- •TR-069
- •OMA-DM
- •OMA Lightweight M2M
- •OSGi

Wide-Area IoT Use Cases

Aircraft data to airlines & suppliers

Global security tracking

Movement monitoring of elderly persons

Bike tracking

Real-time parking data

Diabetes monitoring

Connected alcohol immobilizer

Car rental process management

Industrial gas monitoring

Home security

Electric vehicle charging station connectivity

Compressor waste bins

Propane Tank Level

- Network: 150+ Base stations covering ~40,000 sq. miles in the US
 - 20,000 Semtech LoRa sensors to track propane and oil tank fuel levels
 - Monitor cost: \$40; monitoring fee: \$2.45 / mo
- Services
 - Tank monitoring & automation (propane, heating oil)
 - Water metering (to come)
 - Water irrigation (to come)
- Data Aggregation Platform
 - Scalable Cloud-based server farm
 - Multiple Platforms for data access (Web Services/FTP)
 - Value add applications, metrics

Value proposition: On average, oil delivery drivers visit each customer six times per year. They typically make the delivery runs when the tanks are filled at 50%, which is at a cost per delivery of \$50-100. With IoT, they can deliver at 20% capacity, saving two deliveries per customer per year. If they have between 10,000-15,000 tanks, that's \$1-\$1.5 million a year in savings. http://www.senetco.com/

Smart Parking

The system serves the disabled, EMS, and police. It verifies the occupant to distinguish between allowed and infringing vehicles.

Commercially operational since November 2012. (2,000 spots; planned expansion to 50,000)

The system guides drivers to vacant parking spots and warns not to enter saturated areas.

LPWA Value Chain

Device vendors	RF module vendors: typically low margin commodity market
Infrastructure equipment vendors	Base station vendors
Service provider	Private or public service provider
Application enablement & development platform providers	 Specialized solutions enabling specific application: e.g. parking, street lights, water meters, etc.
Platform vendors	Device management and control platforms
Data analytics platform providers	 Specialized solutions to extract intelligence from collected sensor data
System integrator	 ICT outsourcing & system integration; deployment & implementation services; managed services
End customer	Private company, a city/municipality, etc.

Performance

Power Optimization

Bit Rate vs. Power Consumption

Technology Comparative Analysis

Comparative Analysis of LPWA Technologies

	Symmetric DL/UL	Multicast / Broadcast	Message Ack	Battery operation	Power control	Location services	Handover support	Firmware upgrade
LoRa	•	•	•	③	③	•	③	②
UNB/SigFox	③	•		\odot	0			
Weightless-P	⊙	③	③	③	③	③	③	③
RPMA	③	③	\odot	\odot	⊙		③	\odot
Telensa UNB	⊙	⊙	⊕	③	0	⊙		•
LTE Cat-1	⊙	③	③		⊙	\odot	\odot	③
LTE Cat-m1	③	③	③	③	③	③	③	③
LTE NB-IoT	⊙	③	③	③	③	③	•	③
😥: Supported 😘: Not supported 🚯: Partial support; optional support O: Not required								

LPWA Network Overview

Wide-Area IoT Connectivity Requirements (examples)

- Battery operation for 7 to 10 years
- > Send less than 1,000 bytes of data a day, many less than 500
- Extremely low cost modem hardware (under \$10)
- ▶ Low network fees: less that \$1 per month, some will require less than \$0.25 per month
- New business models, pricing schemes, e.g. bill based on data vs. connection; urgency of data
- > Exceptional range: good building penetration for indoor devices; wide area coverage
- Secure service; assured privacy
- Scalable to support large number of devices: efficient air interface protocol

Characteristics of IoT Connectivity

Long sales cycle: many industrial and commercial users are slow to adopt new technologies, especially when the business case is not proven

Design & integration: engineering services to incorporate IoT connectivity

- Incumbent value chain: barrier to entry from existing stakeholders with technologies optimized for specific applications
 - e.g. Scada systems have low latency to meet near-real time performance requirements
 - e.g. Dedicated solutions for aviation applications (5.1 GHz) or public safety (4.9 GHz)

XON APARTNERS

Private vs. Public Networks

Private Networks

- Operate own network
- Unlicensed spectrum
- Capex + Opex model
- Single application

Public Networks

- Shared common network
- Licensed spectrum
- Opex model
- Multiple applications

The Service Provider Business Case

Profit = Revenue - Cost

- Revenue
 - Business models
 - Service revenue: device management, analytics

- **>** Cost
 - Capital expenses
 - Operational expenses

Business Transformation

- New business models
- New revenue streams
- Interaction with end user

Anything as a Service: XaaS!

Value Chain

Business Models

Pucinose model	R	evenue Typ	Everale	
Business model	One-time	Recurring	Use-based	Example
Transactional	✓			Private network
Revenue sharing		\checkmark		New service: asset tracking
Cost savings		\checkmark		Energy savings
Product sharing			√	Asset rental, lease
Product as a Service		✓		Predictive maintenance
Performance as a Product			√	Pay per event

Revenue Opportunities for Service Providers

Device management

Connectivity

Data visualization

Value added services

Client Service provider

Commodity service:
Collect, process and transfer data

High-value service: Process and visualize data; analytics, SAAS and machine learning

- Commoditization of connectivity
 - Low connectivity revenue per device (e.g. ~\$2-\$3 / device / year)
 - Increase revenue and market power through end-to-end and support solutions

Value of IoT

XON APARTNERS

Pricing Example: Incumbent Service Provider

AT&T Button

- > \$30/device
- 1,500 clicks / 3 years
- > AWS 1-Click

AT&T Data Plans

Based on monthly data consumption

- 500 KB: \$0.99

- 1 MB: \$1.5

- 2 MB: \$2

- 5 MB: \$4

- 10 MB: \$6

- 25 MB: \$8

- ... 10 GB: \$60

Pricing Example: LPWAN Service Provider

> Standard contract allows for 140 messages per day (~1 every 10 minutes) and 12 bytes per message

Subscription cost: up to ~\$20/year per sensor

Scalability is critical to enable the LPWA business case but so are additional services: connectivity is a commodity

Capital Expenses

Radio access	 Access gateways, antennas and cables Site acquisition, permitting Installation, test and commissioning Radio planning & design Project management Spare parts Devices
Core network	 Network server Design services Implementation, test and commissioning
IoT backend and applications	 Cloud infrastructure Setup fees Application expenses

Operational Expenses

Radio access	 Site lease Backhaul Power Warranties and vendor support Staffing expenses for radio network Field staff Engineering services
Core network	 Product licensing expenses Staffing expenses: engineering services; support and maintenance
IoT backend and applications	 Recurring application expenses Storage expenses Cloud support expenses

Determining Cost

Access Network

Service area → design for coverage

Application requirements → design for capacity

Core networks and backend systems

Scalability: number of devices, amount of data,...

Application Requirements

- Transmission profile
 - How many bytes, how often
 - Unidirectional, bi-directional
- Deployment location: indoor, outdoor
- What information to store
- Device density
- Power requirements: battery, on-grid
- **)** Cost
- Device management

Confidential

30

Application Requirements

Application	Bytes	Frequency (message/day)
Electricity meters	100	24
Gas meters	70	2
Water meters	96	1
Fault circuit indicator	96	1
Smart transformer	50	4

Service Area

Scenario	Population	Coverage area (sq. km)	Devices (water meters)	Coverage Radius (km)
Rural township	25,000	326	6,250	8.2
Small / medium city	135,000	64	38,500	2.4
Large city	725,000	292	242,000	1.5

- LoRa Technology
- > 5,000 devices per gateway

Access Network Capex

Category	# Devices	Coverage GW	Capacity GW	Required GWs	Capex
Rural township	6,250	10	2	10	\$100,000
Small / medium city	38,571	5	8	8	\$80,000
Large city	241,667	53	49	53	\$530,000

Access Network Opex

- Recurring expenses
 - Sites lease
 - Backhaul
 - Power
 - Vendors warranties & support
 - Network operation and maintenance

>	Amortization	period: 5 –	10 years
---	--------------	-------------	----------

- Inflation, time value of money
- > Opex = \$5,000 /site/year
 - \$35,000 /site for 7 years, no inflation

Category	Required GWs	Орех
Rural township	10	\$350,000
Small / medium city	8	\$280,000
Large city	53	\$1,855,000

Additional considerations?

- Licensing
- Spectrum

Core Network Sizing

- Dependencies
 - Gateways
 - Devices
 - Data
 - # of messages
 - Size of message
 - Other?

) Own vs. lease

> %'age of core decreases as networks get larger

- Capital Expenses
- Radio Operating Expenses
- Core Operating Expenses

LPWAN Cost Metrics

	Total cost of infrastructure ownership amortized per device	Breakeven monthly price between public and private networks
Rural township	\$1,203	\$10.2
Medium city	\$197	\$1.7
Large city	\$66	\$0.55

About Xona Partners

Boutique Advisory Firm Specialized in Developing New Technology Ventures

Private Equity & Venture Funds

M&A due diligence

Technology Corporations

New business ventures; spin-outs, spin-ins

Governments, Regulatory & Policy Makers

Market & technology assessment

Contact: advisors@xonapartners.com

Web: www.xonapartners.com

Partners & Advisors: www.xonapartners.com/team

XONA Partners Innovate. Enable.

