Defining the Innovation Band and Shared Spectrum Access

3.5 GHz Shared Spectrum RulesSpectrum sharing rules for the 3.5 GHz band in the US are beginning to take shape. While there are still some important aspects to define, the broad lines have been drawn for the Citizens Broadband Radio Service (CBRS). The process of fine-tuning the rules will continue following the April Further Notice of Proposed Rulemaking (FNPRM) (comments are due July 14th and reply comments by August 1st). The proposed rules will have a three-tiered spectrum sharing scheme in 3550 – 3650 MHz between Incumbent Access, Priority Access License (PAL) and General Authorized Access (GAA) users. Furthermore, there door is open to roll into this band the 3650 – 3700 MHz band which today operates on a non-exclusive licensed basis. Continue reading

Raising the Stakes in 3.5 GHz: LTE-Advanced Achieves 1 Gbps

1Gbps LTE-AThe 3 GHz frequency bands stands at the upper limit of what is considered today as viable spectrum for mobile communications. But bands 42 (3400 – 3600 MHz) and 43 (3600 – 3800 MHz) are not only the ‘last frontier’, but more importantly, they provide the widest spectrum of any other band (200 MHz). Additionally, the relatively short wavelength is perfect to enable advanced antenna system technologies based on beamforming and massive MIMO techniques. Couple these with the limited range of propagation that limits interference and the 3.5 GHz band becomes an interesting proposition for capacity starved operators. Continue reading

Small Cells Progress Report – Challenges and Opportunities.

Small cells I have just released a new research report on the progress of small cell deployments in collaboration with ExelixistNet:  “Small Cell Ecosystem: Challenges and Opportunities.” The report examines mobile operators’ plans and deployment strategies of small cells and backhaul solutions along with vendor and technology preferences. The research is based on experience gathered by operators from market trials of small cells and wireless backhaul solutions conducted to evaluate the ecosystem deployment readiness and impact of small cell roll-out on operator financials and network performance. Continue reading

SON Progress Report: A Lot Still to Be Done!

SONSince the first building blocks of SON were laid down around 2008 by 3GPP and NGMN, uptake in SON deployments has been very selective by a few leading carriers for some use cases. However, universal applicability remains elusive. To say the least, the SON market is struggling – but why, and how that can be turned around is what interests me. Having just attended the SON USA conference, I had made a few observations and like to put some down here. Continue reading

Further Enhanced ICIC (FeICIC)

FeICIC LTE-AdvancedGuest post by Faris Alfarhan*

In an earlier post, R10-LTE enhanced inter-cell interference coordination (eICIC) techniques for heterogeneous networks were discussed, along with the concept of small cell range expansion. The purpose of cell range expansion is to offload more traffic from macro cells to small cells and hence achieve larger cell splitting gains. By adding a cell selection bias, the service area of small cells increases and more users are offloaded to small cells. The need for heterogeneous networks interference management schemes stems from the fact that users in the small cell range expansion area are vulnerable to stronger interference signals than useful signals from the associated serving small cell. In the previous post, it was explained how time domain partitioning based eICIC schemes – known as Almost Blank Subframes (ABS) – could be used to control the interference on the data channels in the range expansion region. Further, carrier aggregation based techniques – known as Cross Carrier Scheduling – could be used to control interference on the control channels (such as the PDCCH, PCFICH, and PHICH channels). However, R10 eICIC schemes did not address interference control on cell-specific reference signals (CRS), which cannot be blanked in order to ensure backward compatibility with R8 and R9 UEs. In this post, R11 improvements to eICIC schemes are discussed, along with the shortcomings of R10 eICIC schemes. First, the concept of Reduced Power Almost Blank Subframes (RP-ABS) is explained along with its advantages over ABS. I then discuss the R11 techniques of Further enhanced ICIC (FeICIC) to control the interference on CRS resources. Continue reading

Trends in Wireless Network Densification

Small Cells - Network DensificationOne of the main trends in radio access network (RAN) is the bifurcation of systems that enable network densification. Today, mobile network operators have more options than ever before for the means of providing service to their subscribers. Alongside the evolution of wireless standards to provide higher spectral efficiency, vendors have unleashed a wide variety of radio access nodes. While the macro cell remains the workhorse, small cells, distributed antenna systems (DAS), distributed radio systems (DRS) and Cloud RAN (CRAN) are systems that will see increasingly wider deployment in the future. Given this, what are some of the trends that we see in this space? Continue reading

Free Space Optics: An Overview of Market and Technology

Free space opticsFree space optical (FSO) technology in commercial applications has been around for a couple of decades now. During this time, significant developments happened to improve the utility and reduce cost. Today’s systems pack more capacity in smaller volume and at lower price while measures to improve reliability are integrated into the solutions to increase the robustness of the link.  Yet, the commercial applications of FSO remain in niche segments without a major breakthrough into mainstream markets such as mobile backhaul. In this article, I like to review the basic elements of the FSO market to shed some light on this segment of backhaul that has lived in the shadow of RF technologies. Continue reading

From LTE-U to LTE-DSA: Solving The Capacity Crunch

LTE-UThe proposal by Qualcomm to enable LTE operation in unlicensed band (LTE-U) received a warm response from some (e.g. Ericsson, Verizon) and not so warm from others especially incumbents with strong legacy in Wi-Fi in both the vendor and operator communities. The contentious issue center on co-existence of LTE and Wi-Fi in the same band as Wi-Fi implements ‘listen before talk’ or in technical terms carrier sense multiple access (CSMA) as opposed to LTE where transmissions are scheduled by the base station. This issue plagued WiMAX in unlicensed bands and was topic of much work at the IEEE during standardization activities of that technology. Still, while the proposal is not yet an approved work item for 3GPP LTE Release 13, the next few weeks will most likely see this feature approved to include in the standard with completion timelines by end of 1Q 2016, when we very possibly can see actual systems deployed. Continue reading

Data Sciences and Big Data in Telecom: A Big Deal?

Data SciencesThere is much hype in telecom. In just about every aspect of the network, new trends are shaping up: from the core to the radio access and through the transport network; in hardware, in software and in processes, buzz words and acronyms are aplenty. Worse, how often these acronyms are used out of context just to latch on a popular wave in a vain hope of marketing advantage? No wonder one can feel confused, even discouraged at times. What is real and what’s not? Who can really tell when there’s so much noise that masks real progress! Continue reading

Observations on MWC 2014 – My Takeaways

Saddlenode BifurcationIn a nutshell, the wireless industry keeps on getting broader and more bifurcated. This is the main trend that has been around for years and that will not stop. Communication is becoming truly pervasive. Opportunities and confusion are intermingled. To understand it all, one needs to cut across wider breadth and dive into greater depth to separate hype from reality. This is a challenge all in its own. Separating the real from the fake is harder than ever!

In this year’s edition, some of my observations are: Continue reading

Is the Personal Cell Technology for Real?

SONThe media is abuzz with the news of the pCell wireless technology – after all, it’s not too often that someone comes out and claims to have a technology that will change the world! For now, too little has been revealed on this technology, which is understandable for a startup.  The aura of mystery is necessary to fuel the hype machine. So, what can we deduce from what little has been revealed? And, what are the prospects of such technology? I will outline here a few thoughts to start this conversation and I look forward to your observations and opinion. Continue reading

Canada 700 MHz Spectrum Auction Concludes Raising C$ 5.27 Billion

Spectrum AuctionResults of the auction for 700 MHz spectrum in Canada were announced today:  CAD 5.27 billion (USD 4.73 billion) was raised. This is more than what operators had hoped to fork out for this auction, especially considering the wireless market structure in Canada which does not foster competitive behavior. The average price for the 68 MHz auctioned is CAD 2.20 /MHz-PoP (USD 1.98).  Continue reading

The Long-Term View on Small Cells

Long-Term View Small CellsThe evolution of wireless networks to a HetNet architecture is inevitable, but the question for industry players and investors is what form will it take. This is because there is no single approach to small cells, but rather there are multiple ways to densify the network. Making misplaced bets is common in the technology space, mainly because of the myriad of cause and effects that take place where technology is only a factor among many other factors, and at times a minor one in comparison. Continue reading

Changes to Canada’s Antenna Tower Siting Policy Will Hurt Small Cells

Cell TowerTowers are not a ‘sexy’ topic of discussion – but this one is interesting… New regulations by Industry Canada will require of wireless operators additional commitments to build sub-15 m wireless towers, or let’s call them poles as that’s what most would be.

When I was in the business of designing and building networks, the sub-15 m rule was a blessing: it allowed us to quickly place a cell site until permits for the large cell were completed. With the new rules, this option is gone.

But more importantly, what would the new rules mean for small cell sites? The age of building macros will come to an end as the density of cells is simply too high to get more macros built. This leaves the option to place small cells where needed. The new rules mean that public consultation will be required for small cells. This will add time and cost to the process. Continue reading

What Will 5G Be Like?

5GWe are still at the beginning of the 4G road – in fact some may argue that we did not even reach 4G… officially. Nevertheless, industry chatter on 5G is here. We at Xona Partners have put our thoughts together on what 5G can look like. We recently published a whitepaper on this topic leveraging our multidisciplinary background in different parts of the mobile network. The whitepaper be downloaded through our web site at this link.

I would really like to hear from you what you thoughts are on 5G, what it will be like, how and what it will be used for, and how we will evolve to realize that vision.  Drop me a comment and let’s start the conversation!